4.4 Article

Active miniature transposons from a plant genome and its nonrecombining Y chromosome

Journal

GENETICS
Volume 178, Issue 2, Pages 1085-1092

Publisher

GENETICS
DOI: 10.1534/genetics.107.081745

Keywords

-

Funding

  1. Biotechnology and Biological Sciences Research Council [BB/E020909/1] Funding Source: researchfish
  2. BBSRC [BB/E020909/1] Funding Source: UKRI
  3. Biotechnology and Biological Sciences Research Council [BB/E020909/1] Funding Source: Medline

Ask authors/readers for more resources

Mechanisms involved in eroding fitness of evolving Y chromosomes have been the focus of much theoretical and empirical work. Evolving Y chromosomes are expected to accumulate transposable elements (TEs), but it is not known whether such accumulation contributes to their genetic degeneration. Among TEs, miniature inverted-repeat transposable elements are nonautonomous DNA transposons, often inserted in introns and untranslated regions of genes. Thus, if they invade Y-linked genes and selection against their insertion is ineffective, they could contribute to genetic degeneration of evolving Y chromosomes. Here, we examine the population dynamics of active MITEs in the young Y chromosomes of the plant Silene latifolia and compare their distribution with those in recombining genomic regions. To isolate active MITEs, we developed a straightforward approach on the basis of the assumption that recent transposon insertions or excisions create singleton or low-frequency size polymorphisms that can be detected in alleles from natural populations. Transposon display was then used to infer the distribution of MITE insertion frequencies. The overall frequency spectrum showed an excess of singleton and low-frequency insertions, which suggests that these elements are readily removed from recombining chromosomes. In contrast, insertions on the Y chromosomes were present at high frequencies. Their potential contribution to Y degeneration is discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available