4.0 Article

Neural Crest Cell-Specific Inactivation of Nipbl or Mau2 During Mouse Development Results in a Late Onset of Craniofacial Defects

Journal

GENESIS
Volume 52, Issue 7, Pages 687-694

Publisher

WILEY-BLACKWELL
DOI: 10.1002/dvg.22780

Keywords

Nipbl; Mau2; cohesin loading; neural crest; Cornelia de Lange Syndrome

Funding

  1. Wellcome Trust [076289, 082211]

Ask authors/readers for more resources

Nipbl (Scc2) and Mau2 (Scc4) encode evolutionary conserved proteins that play a vital role for loading the cohesin complex onto chromosomes, thereby ensuring accurate chromosome segregation during cell division. While mutations in human NIPBL are known to cause the developmental disorder Cornelia de Lange syndrome, the functions of Nipbl and Mau2 in mammalian development are poorly defined. Here we generated conditional alleles for both genes in mice and show that neural crest cell-specific inactivation of Nipbl or Mau2 strongly affects craniofacial development. Surprisingly, the early phase of neural crest cell proliferation and migration is only moderately affected in these mutants. Moreover, we found that Mau2 single homozygous mutants exhibited a more severe craniofacial phenotype when compared to that of Nipbl; Mau2 double homozygous mutants. This raises the possibility that the Mau2/Nipbl protein interaction is not only required for cohesin loading, but may also be required to restrict the level of Nipbl involved in regulating gene expression. Together, the data suggest that proliferating neural crest cells tolerate a substantial reduction of cohesin loading proteins and we propose that the successive decrease of cohesin loading proteins in neural crest cells may alter developmental gene regulation in a highly dynamic manner. (C) 2014 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available