4.2 Article

Probing in vivo dynamics of mitochondria and cortical actin networks using high-speed atomic force/fluorescence microscopy

Journal

GENES TO CELLS
Volume 20, Issue 2, Pages 85-94

Publisher

WILEY
DOI: 10.1111/gtc.12204

Keywords

-

Funding

  1. MEXT, Japan [24115003]
  2. JSPS, Japan [26870302]
  3. Grants-in-Aid for Scientific Research [24115003, 26870302] Funding Source: KAKEN

Ask authors/readers for more resources

The dynamics of the cell membrane and submembrane structures are closely linked, facilitating various cellular activities. Although cell surface research and cortical actin studies have shown independent mechanisms for the cell membrane and the actin network, it has been difficult to obtain a comprehensive understanding of the dynamics of these structures in live cells. Here, we used a combined atomic force/optical microscope system to analyze membrane-based cellular events at nanometer-scale resolution in live cells. Imaging the COS-7 cell surface showed detailed structural properties of membrane invagination events corresponding to endocytosis and exocytosis. In addition, the movement of mitochondria and the spatiotemporal dynamics of the cortical F-actin network were directly visualized in vivo. Cortical actin microdomains with sizes ranging from 1.7x10(4) to 1.4x10(5)nm(2) were dynamically rearranged by newly appearing actin filaments, which sometimes accompanied membrane invaginations, suggesting that these events are integrated with the dynamic regulation of submembrane organizations maintained by actin turnovers. These results provide novel insights into the structural aspects of the entire cell membrane machinery which can be visualized with high temporal and spatial resolution.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available