4.2 Article

Halenaquinone, a chemical compound that specifically inhibits the secondary DNA binding of RAD51

Journal

GENES TO CELLS
Volume 16, Issue 4, Pages 427-436

Publisher

WILEY
DOI: 10.1111/j.1365-2443.2011.01494.x

Keywords

-

Funding

  1. Japanese Society for the Promotion of Science (JSPS)
  2. Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan
  3. Grants-in-Aid for Scientific Research [23710221, 22310036, 20114001] Funding Source: KAKEN

Ask authors/readers for more resources

Mutations and single-nucleotide polymorphisms affecting RAD51 gene function have been identified in several tumors, suggesting that the inappropriate expression of RAD51 activity may cause tumorigenesis. RAD51 is an essential enzyme for the homologous recombinational repair (HRR) of DNA double-strand breaks. In the HRR pathway, RAD51 catalyzes the homologous pairing between single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA), which is the central step of the HRR pathway. To identify a chemical compound that regulates the homologous-pairing activity of RAD51, in the present study, we screened crude extract fractions from marine sponges by the RAD51-mediated homologous-pairing assay. Halenaquinone was identified as an inhibitor of the RAD51 homologous-pairing activity. A surface plasmon resonance analysis indicated that halenaquinone directly bound to RAD51. Intriguingly, halenaquinone specifically inhibited dsDNA binding by RAD51 alone or the RAD51-ssDNA complex, but only weakly affected the RAD51-ssDNA binding. In vivo, halenaquinone significantly inhibited the retention of RAD51 at double-strand break sites. Therefore, halenaquinone is a novel type of RAD51 inhibitor that specifically inhibits the RAD51-dsDNA binding.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available