4.3 Review

Modelling tissues in 3D: the next future of pharmaco-toxicology and food research?

Journal

GENES AND NUTRITION
Volume 4, Issue 1, Pages 13-22

Publisher

BMC
DOI: 10.1007/s12263-008-0107-0

Keywords

3-D in vitro models; Microenvironment; Pharmaco-toxicology; Food research; Rotating Wall Vessel bioreactors; Microgravity; Tissue engineering

Funding

  1. European Union [BIOT4-CT97-2148, LSHB-CT-2006-037168]
  2. University of Brescia

Ask authors/readers for more resources

The development and validation of reliable in vitro methods alternative to conventional in vivo studies in experimental animals is a well-recognised priority in the fields of pharmaco-toxicology and food research. Conventional studies based on two-dimensional (2-D) cell monolayers have demonstrated their significant limitations: the chemically and spatially defined three-dimensional (3D) network of extracellular matrix components, cell-to-cell and cell-to-matrix interactions that governs differentiation, proliferation and function of cells in vivo is, in fact, lost under the simplified 2-D condition. Being able to reproduce specific tissue-like structures and to mimic functions and responses of real tissues in a way that is more physiologically relevant than what can be achieved through traditional 2-D cell monolayers, 3-D cell culture represents a potential bridge to cover the gap between animal models and human studies. This article addresses the significance and the potential of 3-D in vitro systems to improve the predictive value of cell-based assays for safety and risk assessment studies and for new drugs development and testing. The crucial role of tissue engineering and of the new microscale technologies for improving and optimising these models, as well as the necessity of developing new protocols and analytical methods for their full exploitation, will be also discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available