4.7 Article

G9a/GLP-dependent histone H3K9me2 patterning during human hematopoietic stem cell lineage commitment

Journal

GENES & DEVELOPMENT
Volume 26, Issue 22, Pages 2499-2511

Publisher

COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT
DOI: 10.1101/gad.200329.112

Keywords

G9a; GLP; H3K9me2; UNC0638; differentiation; hematopoietic stem and progenitor cell

Funding

  1. FHCRC
  2. Pew scholar program
  3. NIH/NHLBI [U01 HL099993]
  4. NIDDK/NIH [P30 DK56465]
  5. CCEH [P30DK056465 740]
  6. NHLBI [U01-HL099997]
  7. HHMI/UW

Ask authors/readers for more resources

G9a and GLP are conserved protein methyltransferases that play key roles during mammalian development through mono-and dimethylation of histone H3 Lys 9 (H3K9me1/2), modifications associated with transcriptional repression. During embryogenesis, large H3K9me2 chromatin territories arise that have been proposed to reinforce lineage choice by affecting high-order chromatin structure. Here we report that in adult human hematopoietic stem and progenitor cells (HSPCs), H3K9me2 chromatin territories are absent in primitive cells and are formed de novo during lineage commitment. In committed HSPCs, G9a/GLP activity nucleates H3K9me2 marks at CpG islands and other genomic sites within genic regions, which then spread across most genic regions during differentiation. Immunofluorescence assays revealed the emergence of H3K9me2 nuclear speckles in committed HSPCs, consistent with progressive marking. Moreover, gene expression analysis indicated that G9a/GLP activity suppresses promiscuous transcription of lineage-affiliated genes and certain gene clusters, suggestive of regulation of HSPC chromatin structure. Remarkably, HSPCs continuously treated with UNC0638, a G9a/GLP small molecular inhibitor, better retain stem cell-like phenotypes and function during in vitro expansion. These results suggest that G9a/GLP activity promotes progressive H3K9me2 patterning during HSPC lineage specification and that its inhibition delays HSPC lineage commitment. They also inform clinical manipulation of donor-derived HSPCs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available