4.5 Article

Increased virus replication in mammalian cells by blocking intracellular innate defense responses

Journal

GENE THERAPY
Volume 15, Issue 7, Pages 545-552

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/gt.2008.12

Keywords

innate immunity; RNA silencing suppressors; IFN antagonists; viral vectors; HIV-1; Sindbis virus; adenovirus

Ask authors/readers for more resources

The mammalian innate immune system senses viral infection by recognizing viral signatures and activates potent antiviral responses. Besides the interferon (IFN) response, there is accumulating evidence that RNA silencing or RNA interference (RNAi) serves as an antiviral mechanism in mammalian cells. Mammalian viruses encode IFN antagonists to counteract the IFN response in infected cells. A number of IFN antagonists are also capable of blocking RNAi in infected cells and therefore serve as RNA-silencing suppressors. Virus replication in infected cells is restricted by these innate antiviral mechanisms, which may kick in earlier than the viral antagonistic or suppressor protein can accumulate. The yield of virus vaccines and viral gene delivery vectors produced in mammalian producer cells may therefore be suboptimal. To investigate whether blocking of the innate antiviral responses in mammalian cells leads to increased viral vector production, we expressed a number of immunity suppressors derived from plant and mammalian viruses in human cells. We measured that the yield of infectious human immunodeficiency virus-1 particles produced in these cells was increased 5- to 10-fold. In addition, the production of lentiviral and adenoviral vector particles was increased 5- to 10-fold, whereas Sindbis virus particle production was increased approximately 100-fold. These results can be employed for improving the production of viral gene transfer vectors and viral vaccine strains.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available