4.6 Article

Density peaks of paralog pairs in human and mouse genomes

Journal

GENE
Volume 527, Issue 1, Pages 55-61

Publisher

ELSEVIER
DOI: 10.1016/j.gene.2013.05.039

Keywords

Gene duplication; Paralogs; Orthologs; Complexity; Zinc fingers; Olfactory receptors

Funding

  1. Russian Foundation for Basic Research (RFBR)
  2. Ministry of Education and Science of Russian Federation [8306]

Ask authors/readers for more resources

Paralog gene trees, which reflect the increase of genomic complexity in the evolution, can be complicated and ambiguous. A simpler complementary approach is analysis of density distribution of paralog pairs. It can reveal general features of genome evolution, which may be hidden in the forest of gene trees. It is known that distribution of human paralog pairs along the axis of protein divergence between pair members forms two main peaks. Here I show that there are three main peaks in the mouse genome. Thus, the multimodality of paralog pair distribution seems to be a fundamental feature of mammalian genomes. Despite the great diversity of domains presented in small amounts or in multidomain architectures with a few predominant domains, both in human and mouse the first peak consists mostly of gene pairs with zinc finger domains or olfactory receptor domain. In the mouse the olfactory receptor predominates, which stipulates the three-peak distribution (since in the olfactory receptors the second peak is closer to the first peak than in other genes). The mammalian-wide zinc finger orthologs are biased towards the second peak. Thus, the marsupial orthologs are nearly absent in the first peak of human and mouse. The gene pairs in the first peak show a lower ratio of nonsynonymous to synonymous substitutions, which suggests that their evolution is more constrained. The plausible explanation is that they are in subfunctionalization state (partition of initial function of ancestral gene), whereas the second peak contains gene pairs that are already in neofunctionalization state (acquiring of novel functions). These data suggest that the adaptive radiation of mammals was accompanied by a burst of duplication of zinc finger genes, which are located in the first (most recent) peak of paralog pairs. (C) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available