4.6 Article

Isolation and characterization of a bread wheat salinity responsive ERF transcription factor

Journal

GENE
Volume 511, Issue 1, Pages 38-45

Publisher

ELSEVIER
DOI: 10.1016/j.gene.2012.09.039

Keywords

AP2/ERF; EAR motif; NLS; Transcription repressor; NHX

Funding

  1. National Basic Research 973 Program of China [2009CB118300, 2012CB114200]
  2. Natural Science Foundation of China [30530480]
  3. National Transgenic Project [2009ZX08009-082B, 2008ZX08002-002]

Ask authors/readers for more resources

A screen conducted on both a suppression subtractive hybridization and a full length cDNA library made from a salinity tolerant bread wheat cultivar SR3 (Triticum aestivum cv. SR3) resulted in the recognition of TaERF4, a gene including both an AP2/ERF domain and a nuclear localization signal. The 982 bp TaERF4 cDNA comprised a 582 bp open reading frame, encoding a 193 residue polypeptide of molecular weight 20 kDa and calculated pl 8.48. A TaERF4-GFP fusion protein localized preferentially to the nuclei of Arabidopsis thaliana protoplasts. TaERF4 is a member of the B-1 group within the ERF sub-family and was not transactivatable in yeast. The presence of an ERF-associated amphiphilic repression (EAR) motif at its C-terminus suggests that TaERF4 is probably a transcription repressor. TaERF4 was inducible by exposure to salinity and osmotic stresses, but not to exogenously supplied abscisic acid (ABA). The heterologous constitutive expression of TaERF4 in Arabidopsis enhanced the level of sensitivity to salinity stress, possibly via the repression of tonoplast Na+/H+ antiporter activity. There was no phenotype associated with the transgene's presence when plants were subjected to either osmotic stress or ABA treatment. TaERF4 appears to be a transcription repressor acting within the ABA-independent response to salinity stress. (C) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available