4.6 Article

Revisit on the evolutionary relationship between alternative splicing and gene duplication

Journal

GENE
Volume 504, Issue 1, Pages 102-106

Publisher

ELSEVIER
DOI: 10.1016/j.gene.2012.05.012

Keywords

Gene duplication; Alternative splicing; Copy number variation; Exon-intron structure

Funding

  1. Ministry of Science and Technology China [2012CB910101]

Ask authors/readers for more resources

Gene duplications and alternative splicing (AS) isoforms are two widespread types of genetic variations that can facilitate diversification of protein function. A number of studies claimed that after gene duplication, two AS isoforms with differential functions can be 'fixed', respectively, in each of the duplicate copies. This simple 'functional-sharing' hypothesis was recently challenged by Roux and Robinson-Rechavi (2011). Instead, they proposed a more sophisticated hypothesis, invoking that less alternative splicing genes tend to be duplicated more frequently, and single-copy genes are younger than duplicate genes, or the 'duplicability-age' hypothesis for short. In this letter, we show that all these genome-wide analyses of AS isoforms actually did not provide clear-cut evidence to nullify the basic idea of functional-sharing hypothesis. After updating our understanding of genome-wide alternative splicing, duplicability and CNV (copy number variation), we argue that the foundation of the duplicability-age hypothesis remains to be justified carefully. Finally, we suggest that a better approach to resolving this controversy is the correspondence analysis of indels (insertions and deletions) between duplicate genes to the genomic exon-intron structure, which can be used to experimentally test the effect of functional-sharing hypothesis. (c) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available