4.6 Article

Genome scale portrait of cAMP-receptor protein (CRP) regulons in mycobacteria points to their role in pathogenesis

Journal

GENE
Volume 407, Issue 1-2, Pages 148-158

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.gene.2007.10.017

Keywords

Rv3676; mycobacterium tuberculosis; cAMP signaling; CRP-regulated genes

Ask authors/readers for more resources

cAMP Receptor Protein (CRP)/Fumarate Nitrate Reductase Regulator (FNR) family proteins are ubiquitous regulators of cell stress in eubacteria. These proteins are commonly associated with maintenance of intracellular oxygen levels, redox-state, oxidative and nitrosative stresses, and extreme temperature conditions by regulating expression of target genes that contain regulatory cognate DNA elements. We describe the use of informatics enabled comparative genomics to identify novel genes under the control of CRP regulator in Mycobacterium tuberculosis (M.tb). An inventory of CRP regulated genes and their operon context in important mycobacterial species such as M. leprae, M avium subsp. paratuberculosis and M. smegmatis and several common genes within this genus including the important cellular functions, mainly, cell-wall biogenesis, cAMP signaling and metabolism associated with such regulons were identified. Our results provide a possible theoretical framework for better understanding of the stress response in mycobacteria. The conservation of the CRP regulated genes in pathogenic mycobacteria, as opposed to non-pathogenic ones, highlights the importance of CRP-regulated genes in pathogenesis. (c) 2007 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available