4.8 Article

Colorectal Carcinomas With CpG Island Methylator Phenotype 1 Frequently Contain Mutations in Chromatin Regulators

Journal

GASTROENTEROLOGY
Volume 146, Issue 2, Pages 530-+

Publisher

W B SAUNDERS CO-ELSEVIER INC
DOI: 10.1053/j.gastro.2013.10.060

Keywords

Colon Cancer; Hypermethylation; Microsatellite Instability; Gene Silencing

Funding

  1. G.S. Hogan Gastrointestinal Research Fund of The University of Texas MD Anderson Cancer Center
  2. National Institutes of Health [CA158112, CA098006, CA100632]

Ask authors/readers for more resources

BACKGROUND & AIMS: Subgroups of colorectal carcinomas (CRCs) characterized by DNA methylation anomalies are termed CpG island methylator phenotype (CIMP)1, CIMP2, or CIMP-negative. The pathogenesis of CIMP1 colorectal carcinomas, and their effects on patients' prognoses and responses to treatment, differ from those of other CRCs. We sought to identify genetic somatic alterations associated with CIMP1 CRCs. METHODS: We examined genomic DNA samples from 100 primary CRCs, 10 adenomas, and adjacent normal-appearing mucosae from patients undergoing surgery or colonoscopy at 3 tertiary medical centers. We performed exome sequencing of 16 colorectal tumors and their adjacent normal tissues. Extensive comparison with known somatic alterations in CRCs allowed segregation of CIMP1-exclusive alterations. The prevalence of mutations in selected genes was determined from an independent cohort. RESULTS: We found that genes that regulate chromatin were mutated in CIMP1 CRCs; the highest rates of mutation were observed in CHD7 and CHD8, which encode members of the chromodomain helicase/adenosine triphosphate-dependent chromatin remodeling family. Somatic mutations in these 2 genes were detected in 5 of 9 CIMP1 CRCs. A prevalence screen showed that nonsilencing mutations in CHD7 and CHD8 occurred significantly more frequently in CIMP1 tumors (18 of 42 [43%]) than in CIMP2 (3 of 34 [9%]; P<.01) or CIMP-negative tumors (2 of 34 [6%]; P<.001). CIMP1 markers had increased binding by CHD7, compared with all genes. Genes altered in patients with CHARGE syndrome (congenital malformations involving the central nervous system, eye, ear, nose, and mediastinal organs) who had CHD7 mutations were also altered in CRCs with mutations in CHD7. CONCLUSIONS: Aberrations in chromatin remodeling could contribute to the development of CIMP1 CRCs. A better understanding of the biological determinants of CRCs can be achieved when these tumors are categorized according to their epigenetic status.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available