4.8 Article

Loss or Silencing of the PHD1 Prolyl Hydroxylase Protects Livers of Mice Against Ischemia/Reperfusion Injury

Journal

GASTROENTEROLOGY
Volume 138, Issue 3, Pages 1143-U438

Publisher

W B SAUNDERS CO-ELSEVIER INC
DOI: 10.1053/j.gastro.2009.09.057

Keywords

PHD1; Prolyl Hydroxylase; Ischemia/Reperfusion

Funding

  1. Deutsche Forschungsgemeinschaft
  2. Federal Government Belgium [IUAP06/30]
  3. Flanders Research Foundation, Belgium [FWO G.0265, FWO G.0387]

Ask authors/readers for more resources

BACKGROUND & AIMS: Liver ischemia/reperfusion (I/R) injury is a frequent cause of organ dysfunction. Loss of the oxygen sensor prolyl hydroxylase domain enzyme 1 (PHD1) causes tolerance of skeletal muscle to hypoxia. We assessed whether loss or short-term silencing of PHD1 could likewise induce hypoxia tolerance in hepatocytes and protect them against hepatic I/R damage. METHODS: Hepatic ischemia was induced in mice by clamping of the portal vessels of the left lateral liver lobe; 90 minutes later livers were reperfused for 8 hours for I/R experiments. Hepatocyte damage following ischemia or I/R was investigated in PHD1-deficient (PHD1(-/-)) and wild-type mice or following short hairpin RNA-mediated short-term inhibition of PHD1 in vivo. RESULTS: PHD1(-/-) livers were largely protected against acute ischemia or I/R injury. Among mice subjected to hepatic I/R followed by surgical resection of all nonischemic liver lobes, more than half of wild-type mice succumbed, whereas all PHD1(-/-) mice survived. Also, short-term inhibition of PHD1 through RNA interference-mediated silencing provided protection against I/R. Knockdown of PHD1 also induced hypoxia tolerance of hepatocytes in vitro. Mechanistically, loss of PHD1 decreased production of oxidative stress, which likely relates to a decrease in oxygen consumption as a result of a reprogramming of hepatocellular metabolism. CONCLUSIONS: Loss of PHD1 provided tolerance of hepatocytes to acute hypoxia and protected them against I/R-damage. Short-term inhibition of PHD1 is a novel therapeutic approach to reducing or preventing I/R-induced liver injury.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available