4.8 Article

Combined Targeted Treatment to Eliminate Tumorigenic Cancer Stem Cells in Human Pancreatic Cancer

Journal

GASTROENTEROLOGY
Volume 137, Issue 3, Pages 1102-1113

Publisher

W B SAUNDERS CO-ELSEVIER INC
DOI: 10.1053/j.gastro.2009.05.053

Keywords

-

Funding

  1. Dr Mildred Scheel Foundation [108168]
  2. Friedrich-Baur Foundation
  3. ERC Advanced Investigator [Pa-CSC 233460]
  4. Ludwig-Maximilian University

Ask authors/readers for more resources

BACKGROUND & AIMS: Pancreatic cancers contain exclusively tumorigenic cancer stem cells (CSCs), which are highly resistant to chemotherapy, resulting in a relative increase in CSC numbers during gemcitabine treatment. Signaling through sonic hedgehog and mammalian target of rapamycin (mTOR), respectively, may be essential for CSC self-renewal and could represent putative targets for novel treatment modalities. METHODS: We used in vitro and in vivo models of pancreatic cancer to examine the effects of sonic hedgehog inhibition (cyclopamine/CUR199691) and mTOR blockade (rapamycin) on the tumorigenic CSC population. RESULTS: Surprisingly, neither cyclopamine nor rapamycin alone or as supplements to chemotherapy were capable of effectivety diminishing the CSC pool. Only the combined inhibition of both pathways together with chemotherapy reduced the number of CSCs to virtually undetectable levels in vitro and in vivo. Most importantly, in vivo administration of this triple combination in mice with established patient-derived pancreatic tumors was reasonably tolerated and translated into significantly prolonged long-term survival. CONCLUSIONS: The combined blockade of sonic hedgehog and mTOR signaling together with standard chemotherapy is capable of eliminating pancreatic CSCs. Further preclinical investigation of this promising approach may lead to the development of a novel therapeutic strategy to improve the devastating prognosis of patients with pancreatic cancer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available