4.1 Article Proceedings Paper

TURBULENT CONVECTION AND ANOMALOUS CROSS-FIELD TRANSPORT IN MIRROR PLASMAS

Journal

FUSION SCIENCE AND TECHNOLOGY
Volume 59, Issue 1T, Pages 84-89

Publisher

AMER NUCLEAR SOC
DOI: 10.13182/FST11-A11580

Keywords

-

Ask authors/readers for more resources

Low-frequency quasi-2D plasma convection and the resultant nondiffusive cross-field plasma transport in mirror-based systems are studied by means of direct computer simulations of nonlinear plasma dynamics in a frame of adiabatically reduced one-fluid MID model. The simulations were performed for axisymmetric or effectively symmetrized paraxial mirror-based systems such as tandem mirror and gas dynamic traps. Various regimes of plasma confinement with sheared plasma rotation were modeled and analyzed Simulations have shown formation of large-scale flute-like stochastic vortex structures, which are similar to the vortex-like structures observed in GAMMA 10 and GDT experiments. It was shown that a controlled formation of high-vorticity layers allows one to prevent fast plasma degradation and to reduce considerably the nondiffusive cross-field plasma transport even in a presence of unstable pressure driven modes with a weak MHD drive. The effect results from an appreciable nonlinear modification of dominant vortex-like structures due to a competition between pressure driven and Kelvin-Helmholtz instabilities.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available