4.5 Article Proceedings Paper

Qualification and post-mortem characterization of tungsten mock-ups exposed to cyclic high heat flux loading

Journal

FUSION ENGINEERING AND DESIGN
Volume 88, Issue 9-10, Pages 1858-1861

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.fusengdes.2013.05.091

Keywords

Tungsten; Divertor; Thermal fatigue; Damage analysis

Ask authors/readers for more resources

In order to evaluate the option to start the ITER operation with a full tungsten (W) divertor, high heat flux tests were performed in the electron beam facility FE200, Le Creusot, France. Thereby, in total eight small-scale and three medium-scale monoblock mock-ups produced with different manufacturing technologies and different tungsten grades were exposed to cyclic steady state heat loads. The applied power density ranges from 10 to 20 MW/m(2) with a maximum of 1000 cycles at each particular loading step. Finally, on a reduced number of tiles, critical heat flux tests in the range of 30 MW/m(2) were performed. Besides macroscopic and microscopic images of the loaded surface areas, detailed metallographic analyses were performed in order to characterize the occurring damages, i.e., crack formation, recrystallization, and melting. Thereby, the different joining technologies, i.e., hot radial pressing (HRP) vs. hot isostatic pressing (HIP) of tungsten to the Cu-based cooling tube, were qualified showing a higher stability and reproducibility of the HIP technology also as repair technology. Finally, the material response at the loaded top surface was found to be depending on the material grade, microstructural orientation, and recrystallization state of the material. These damages might be triggered by the application of thermal shock loads during electron beam surface scanning and not by the steady state heat load only. However, the superposition of thermal fatigue loads and thermal shocks as also expected during ELMs in ITER gives a first impression of the possible severe material degradation at the surface during operational scenarios at the divertor strike point. (C) 2013.Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available