4.4 Article

Fungal S-adenosylmethionine synthetase and the control of development and secondary metabolism in Aspergillus nidulans

Journal

FUNGAL GENETICS AND BIOLOGY
Volume 49, Issue 6, Pages 443-454

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.fgb.2012.04.003

Keywords

S-adenosylmethionine synthetase; Methylation; Aspergillus nidulans; Sexual development; Secondary metabolism; Tandem affinity purification

Funding

  1. Deutsche Forschungsgemeinschaft (DFG)
  2. Volkswagen-Stiftung
  3. Fonds der Chemischen Industrie
  4. [FOR1334]

Ask authors/readers for more resources

The filamentous fungus Aspergillus nidulans carries a single gene for the S-adenosylmethionine (SAM) synthetase SasA, whereas many other organisms possess multiple SAM synthetases. The conserved enzyme catalyzes the reaction of methionine and ATP to the ubiquitous methyl group donor SAM. SAM is the main methyl group donor for methyltransferases to modify DNA, RNA, protein, metabolites, or phospholipid target substrates. We show here that the single A. nidulans SAM synthetase encoding gene sasA is essential. Overexpression of sasA, encoding a predominantly cytoplasmic protein, led to impaired development including only small sterile fruiting bodies which are surrounded by unusually pigmented auxiliary Hulle cells. Hulle cells are the only fungal cell type which does not contain significant amounts of SasA. Sterigmatocystin production is altered when sasA is overexpressed, suggesting defects in coordination of development and secondary metabolism. SasA interacts with various metabolic proteins including methionine or mitochondrial metabolic enzymes as well as proteins involved in fungal morphogenesis. SasA interaction to histone-2B might reflect a putative epigenetic link to gene expression. Our data suggest a distinct role of SasA in coordinating fungal secondary metabolism and development. (C) 2012 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available