4.5 Article

Effects of growth temperature on photosynthetic gas exchange characteristics and hydraulic anatomy in leaves of two cold-climate Poa species

Journal

FUNCTIONAL PLANT BIOLOGY
Volume 38, Issue 1, Pages 54-62

Publisher

CSIRO PUBLISHING
DOI: 10.1071/FP10023

Keywords

A-C(i) curve; cold tolerance; Macquarie Island

Categories

Funding

  1. Australian Postgraduate Award
  2. ANU Research School of Biological Sciences
  3. Australian Research Council [DP0452526, DP0881009]

Ask authors/readers for more resources

How plastic is hydraulic anatomy with growth temperature, and how does this relate to photosynthesis? These interrelationships were studied in subantarctic Poa foliosa Hook. f. and alpine Poa hothamensis Vickery grown under 7/4 degrees C and 12/9 degrees C day/night temperatures, reflecting summer temperatures in their respective habitats. Conduit radii were smaller in P. foliosa than in P. hothamensis, consistent with greater avoidance of freeze/thaw-induced embolism. Despite its origins in an environment with relatively little temperature variation, P. foliosa exhibited greater plasticity in hydraulic anatomy than P. hothamensis, increasing the size and density of conduits when grown under the warmer temperature regime. Both species had similar anatomical capacities for water transport when grown at 12/9 degrees C, but stomatal conductance was lower in P. foliosa than P. hothamensis, suggesting hydraulic limitations not explained by leaf vascular anatomy. However, greater photosynthetic capacity and foliar nitrogen contents enabled P. foliosa to achieve the same assimilation rate as P. hothamensis under the 12/9 degrees C growth conditions. Our results showed that nitrogen plays a central role in maintaining assimilation rates when constrained either by enzymatic activity at low temperatures or by hydraulic limitations at high temperatures and evaporative demands. Interspecific differences in nitrogen and water use may influence how subantarctic and alpine vegetation responds to climate warming.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available