4.5 Article

Ionic relations and osmotic adjustment in durum and bread wheat under saline conditions

Journal

FUNCTIONAL PLANT BIOLOGY
Volume 36, Issue 12, Pages 1110-1119

Publisher

CSIRO PUBLISHING
DOI: 10.1071/FP09051

Keywords

salinity tolerance; screening; shoot sap ion content; Triticum aestivum; Triticum turgidum ssp durum

Categories

Funding

  1. GDRC [UT00013]

Ask authors/readers for more resources

Wheat breeding for salinity tolerance has traditionally focussed on Na+ exclusion from the shoot, but its association with salinity tolerance remains tenuous. Accordingly, the physiological significance of shoot Na+ exclusion and maintenance of an optimal K+:Na+ ratio was re-evaluated by studying NaCl-induced responses in 50 genotypes of bread wheat (Triticum aestivum L.) and durum wheat (Triticum turgidum L. ssp. durum) treated with 150 mM NaCl. Overall, Na+ exclusion from the shoot correlated with salinity tolerance in both species and this exclusion was more efficient in bread compared with durum wheat. Interestingly, shoot sap K+ increased significantly in nearly all durum and bread wheat genotypes. Conversely, the total shoot K+ content declined. We argue that this increase in shoot sap K+ is needed to provide efficient osmotic adjustment under saline conditions. Durum wheat was able to completely adjust shoot sap osmolality using K+, Na+ and Cl-; it had intrinsically higher levels of these solutes. In bread wheat, organic osmolytes must contribute similar to 13% of the total shoot osmolality. In contrast to barley (Hordeum vulgare L.), NaCl-induced K+ efflux from seedling roots did not predict salinity tolerance in wheat, implying that shoot, not root K+ retention is important in this species.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available