4.5 Review

Cell wall biosynthesis and the molecular mechanism of plant enlargement

Journal

FUNCTIONAL PLANT BIOLOGY
Volume 36, Issue 5, Pages 383-394

Publisher

CSIRO PUBLISHING
DOI: 10.1071/FP09048

Keywords

calcium; Chara corallina; gel; growth; irreversible deformation; pectate; pectin; tension; turgor pressure

Categories

Ask authors/readers for more resources

Recently discovered reactions allow the green alga Chara corallina (Klien ex. Willd., em. R.D.W.) to grow well without the benefit of xyloglucan or rhamnogalactan II in its cell wall. Growth rates are controlled by polygalacturonic acid (pectate) bound with calcium in the primary wall, and the reactions remove calcium from these bonds when new pectate is supplied. The removal appears to occur preferentially in bonds distorted by wall tension produced by the turgor pressure (P). The loss of calcium accelerates irreversible wall extension if P is above a critical level. The new pectate (now calcium pectate) then binds to the wall and decelerates wall extension, depositing new wall material on and within the old wall. Together, these reactions create a non-enzymatic but stoichiometric link between wall growth and wall deposition. In green plants, pectate is one of the most conserved components of the primary wall, and it is therefore proposed that the acceleration-deceleration-wall deposition reactions are of wide occurrence likely to underlie growth in virtually all green plants. C. corallina is one of the closest relatives of the progenitors of terrestrial plants, and this review focuses on the pectate reactions and how they may fit existing theories of plant growth.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available