4.5 Article

Vessel wall vibrations: trigger for embolism repair?

Journal

FUNCTIONAL PLANT BIOLOGY
Volume 35, Issue 4, Pages 289-297

Publisher

CSIRO PUBLISHING
DOI: 10.1071/FP07239

Keywords

embolism repair; Laurus nobilis; starch depolymerisation; stem sonication; wood parenchyma cells; xylem cavitation

Categories

Ask authors/readers for more resources

Xylem embolism repair is preceded by starch depolymerisation in vessel-associated cells (VAC) of Laurus nobilis L. (laurel) twigs, but the primary signal triggering such a process is still unknown. We tested the hypothesis that conduit wall vibrations during cavitation may be sensed by VAC inducing starch-to-sugar conversion. Twigs of laurel from watered or stressed plants were exposed to ultrasound for 60 min to simulate acoustic waves emitted by cavitating conduits. Preliminary tests showed that ultrasound caused no damage to cell membrane integrity nor did they cause xylem embolism. The number of VAC with high starch content (HSC-cells) was estimated microscopically by counting the cells with more than 50% of their lumen filled with starch granules. Sonication had no effect on HSC-cells in twigs from watered plants while it induced a drop in the percentage HSC-cells from 80 to 40% in twigs from stressed plants, at the ultrasound source location. No effect was recorded in these twigs 20 mm from the ultrasound source. Sonication was a good simulator of cavitation in inducing starch depolymerisation which suggests a possible bio- physical nature for the signal initiating embolism repair.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available