4.7 Article

Interpreting the smells of predation: how alarm cues and kairomones induce different prey defences

Journal

FUNCTIONAL ECOLOGY
Volume 23, Issue 6, Pages 1114-1121

Publisher

WILEY
DOI: 10.1111/j.1365-2435.2009.01578.x

Keywords

eavesdropping; inducible defence; phenotypic plasticity; predation cues; predator labelling

Categories

Funding

  1. National Science Foundation
  2. University of Pittsburgh [0205421]

Ask authors/readers for more resources

P>1. For phenotypically plastic organisms to produce phenotypes that are well matched to their environment, they must acquire information about their environment. For inducible defences, cues from damaged prey and cues from predators both have the potential to provide important information, yet we know little about the relative importance of these separate sources of information for behavioural and morphological defences. We also do not know the point during a predation event at which kairomones are produced, i.e. whether they are produced constitutively, during prey attack or during prey digestion. 2. We exposed leopard frog tadpoles (Rana pipiens) to nine predator cue treatments involving several combinations of cues from damaged conspecifics or heterospecifics, starved predators, predators only chewing prey, predators only digesting prey or predators chewing and digesting prey. 3. We quantified two behavioural defences. Tadpole hiding behaviour was induced only by cues from crushed tadpoles. Reduced tadpole activity was induced only by cues from predators digesting tadpoles or predators chewing + digesting tadpoles. 4. We also quantified tadpole mass and two size-adjusted morphological traits that are known to be phenotypically plastic. Mass was unaffected by the cue treatments. Relative body length was affected (i.e. there were differences among some treatments), but none of the treatments significantly differed from the no-predator control. Relative tail depth was affected by the treatments and deeper tails were induced only when tadpoles were exposed to cues from predators digesting tadpoles or cues from predators chewing + digesting tadpoles. 5. These results demonstrate that some prey species can discriminate among a diverse set of potential cues from heterospecific prey, conspecific prey and predators. Moreover, the results illustrate that the cues responsible for the full suite of behavioural and morphological defences are not induced by tadpole crushing nor can they be induced by generalized digestive chemicals produced when predators digest their prey. Instead, both prey damage and predator digestion of conspecific tissues appear to be important for communicating predatory risk to phenotypically plastic anuran prey. Importantly, the production of chemical cues by predators may be unavoidable and prey have evolved the ability to eavesdrop on these signals.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available