4.5 Article

Transgenic expression of TaMYB2A confers enhanced tolerance to multiple abiotic stresses in Arabidopsis

Journal

FUNCTIONAL & INTEGRATIVE GENOMICS
Volume 11, Issue 3, Pages 445-465

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s10142-011-0218-3

Keywords

Transcription factor; Phenotype; Physiological trait; Stress response

Funding

  1. National Science Foundation of China [31040089]
  2. Key Project of Chinese National Programs for Fundamental Research and Development [2010CB951501]
  3. National Key Technologies RD Program [2009ZX08002-012B]

Ask authors/readers for more resources

Osmotic stresses such as drought, salinity, and cold are major environmental factors that limit agricultural productivity. Transcription factors play essential roles in abiotic stress signaling in plants. Three TaMYB2 members were identified and designated TaMYB2A, TaMYB2B, and TaMYB2D based on their genomic origins. The cis-regulatory elements in the promoter regions were compared, and their diverse expression patterns under different abiotic stress conditions were identified. TaMYB2A was further characterized because of its earlier response to stresses. Subcellular localization revealed that TaMYB2A localized in the nucleus. To examine the role of TaMYB2A under various environmental stresses, transgenic Arabidopsis plants carrying TaMYB2A controlled by the CaMV 35S promoter were generated and subjected to severe abiotic stress. TaMYB2A transgenics had enhanced tolerance to drought, salt, and freezing stresses, which were confirmed by the enhanced expressions of abiotic stress-responsive genes and several physiological indices, including decreased rate of water loss, enhanced cell membrane stability, improved photosynthetic potential, and reduced osmotic potential. TaMYB2A is a multifunctional regulatory factor. Its overexpression confers enhanced tolerance to multiple abiotic stresses while having no obvious negative effects on phenotype under well-watered and stressed conditions; thus, TaMYB2A has the potential for utilization in transgenic breeding to improve abiotic stress tolerances in crops.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available