4.7 Article

Simplified dynamic simulation model of plastic waste pyrolysis in laboratory and pilot scale tubular reactor

Journal

FUEL PROCESSING TECHNOLOGY
Volume 106, Issue -, Pages 186-200

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.fuproc.2012.07.024

Keywords

Plastic (polyethylene) wastes; Pyrolysis; Tubular reactor; Dynamic simulation; Genetic algorithm

Funding

  1. Hungarian State and the European Union
  2. [TAMOP-4.2.1/B-09/1/KONV-2010-0003]

Ask authors/readers for more resources

Thermal pyrolysis of plastic wastes in tubular reactor has been studied with Direct Computer Mapping based simulation methodology, combined with genetic algorithm. Degradation process was carried out in laboratory and pilot scale tubular reactor. The investigated pyrolysis temperature range was 465-545 degrees C, and raw material feeding rate was between 6 and 20 g/min. A dynamic simulation model has been developed based on a four-step degradation scheme, considering four cracking product fractions (gas, naphtha, middle distillate and heavy oil) and their hydrocarbon composition (paraffin, olefin and aromatic). A collaborating genetic algorithm was used for the identification of kinetic and stoichiometric model parameters. Having analyzed the identification results we concluded that some of the stoichiometric parameters, moreover all of the kinetic parameters and vapour/liquid phase ratios were independent from the reaction parameters, however they depend on the quality of raw material. The temperature and feeding rate dependency of the model were considered by two calculated parameters (pLiq, pAro). According to the investigations, the rate determining factor of the degradation process is the effectively utilized enthalpy resulting from the heat transfer through the wall of the equipment. The simplified dynamic simulation model can support the scale-up procedure of the pyrolysis technology. (C) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available