4.7 Article

Deep desulfurization of gasoline using ion-exchange zeolites: Cu(I)- and Ag(I)-beta

Journal

FUEL PROCESSING TECHNOLOGY
Volume 90, Issue 1, Pages 122-129

Publisher

ELSEVIER
DOI: 10.1016/j.fuproc.2008.08.003

Keywords

Adsorption; Beta adsorbent; Desulfurization; Gasoline

Funding

  1. National Basic Research Program of China [2004CB217806]

Ask authors/readers for more resources

Solid adsorbents Cu(I) and Ag(I) metal exchanged beta zeolites were prepared by solid-state ion-exchange (SSIE) method. Crystallographic structure of the prepared adsorbents has been characterized by XRD analysis. The texture of the prepared adsorbents was investigated using N-2 sorption. Pyridine IR measurements have been carried out to investigate the nature of the acid sites of the adsorbents. The deep-desulfurization performance of such adsorbents has been evaluated through fixed-bed adsorption technique with model gasoline containing thiophene and benzothiophene at ambient temperature and pressure. The obtained results revealed that the breakthrough capacities of Cu(I)- and Ag(I)-beta zeolite with the optimized Cu+ or Ag+ content are 0.239 mmol S/g and 0.237 mmol S/g, respectively. The remaining sulfur in the desulfurized gasoline is less than 1 ppmw. Their desulfurization capacity for actual FCC gasoline blend is reduced about 30% due to the competitive adsorption from olefins and aromatics. However, The capacity regeneration of Cu(l)- and Ag(I)-beta zeolite sorbents was carried out for 9 times. It is more than 95% recovery of desulfurization after the first regeneration, and it keeps little reduction after subsequent 8 times of regeneration. Such studies included the effect factors on desulfurization performance, such as metal exchange content, SiO2/Al2O3 ratio, acidity, and other texture properties of the zeolite etc. Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available