4.5 Article

Scaffold-cell bone engineering in a validated preclinical animal model: precursors vs differentiated cell source

Journal

Publisher

WILEY
DOI: 10.1002/term.2104

Keywords

bone defect; mesenchymal progenitor cells; allogenic cells; osteoblasts; bone tissue engineering; bone regeneration; scaffolds; polycaprolactone

Funding

  1. Australian Research Council [ARC LP100200084]
  2. National Health and Medical Research Board
  3. AO Foundation
  4. German Research Foundation (DFG) [BE 4492/1-2, HE 7074/1-1]

Ask authors/readers for more resources

The properties of osteoblasts (OBs) isolated from the axial skeleton (tOBs) differ from OBs of the orofacial skeleton (mOBs) due to the different embryological origins of the bones. The aim of the study was to assess and compare the regenerative potential of allogenic bone marrow-derived mesenchymal progenitor cells with allogenic tOBs and allogenic mOBs in combination with a mPCL-TCP scaffold in critical-sized segmental bone defects in sheep tibiae. After 6months, the tibiae were explanted and underwent biomechanical testing, micro-computed tomography (microCT) and histological and immunohistochemical analyses. Allogenic MPCs demonstrated a trend towards a better outcome in biomechanical testing and the mean values of newly formed bone. Biomechanical, microCT and histological analysis showed no significant differences in the bone regeneration potential of tOBs and mOBs in our in vitro study, as well as in the bone regeneration potential of different cell types in vivo. Copyright (c) 2015 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available