4.7 Article

Pyrolyzed phthalocyanines as surrogate carbon catalysts: Initial insights into oxygen-transfer mechanisms

Journal

FUEL
Volume 99, Issue -, Pages 106-117

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2012.03.055

Keywords

Phthalocyanine; Heat-treatment; Oxygen transfer; Metal-carbon; Moiety

Funding

  1. FONDECYT-Chile [1060950, 1080334]
  2. MECESUP-Chile [UCO0108]
  3. CLUSTER
  4. Japanese Ministry of Education, Culture, Sports, Science and Technology
  5. The Excellence, JST
  6. Grants-in-Aid for Scientific Research [23350072] Funding Source: KAKEN

Ask authors/readers for more resources

Deposited and heat-treated phthalocyanines are promising electrocatalysts for replacing platinum in the oxygen reduction reaction (ORR), the most important process in energy conversion systems such as fuel cells; and yet its key mechanistic features are not well understood. To optimize their use, it is necessary to understand their behavior in the absence of an electric field. In the pursuit of this goal, we pyrolyzed metal-free, cobalt and copper phthalocyanines between 550 and 1000 degrees C and studied their structural and chemical changes by elemental analysis, N-2 and CO2 adsorption, X-ray diffraction (XRD), Raman spectroscopy, X-ray analysis fine structure (XAFS) and X-ray photoelectron spectroscopy (XPS). Their catalytic activity was assessed by non-isothermal O-2 gasification and NO reduction reactions. A comparison of these results with their other properties allowed us to reach the following conclusions: (i) the loss of reactivity of metal-free phthalocyanine with heat treatment is attributed to its structural annealing and heteroatom loss, with the porosity changes having no effect; (ii) for metal phthalocyanines at intermediate heat treatment temperatures, the optimum in reactivity correlates with the micropore surface area and the presence of metal particles, with no influence of nitrogen content; (iii) the coordination metal increases phthalocyanine thermal stability in an inert atmosphere, but in an oxidizing atmosphere it acts as a gasification catalyst even below decomposition temperatures. The implications of these findings for catalytic oxygen-transfer mechanisms are discussed. (C) 2012 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available