4.7 Article

A reduced mechanism for biodiesel surrogates for compression ignition engine applications

Journal

FUEL
Volume 99, Issue -, Pages 143-153

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2012.04.028

Keywords

Mechanism reduction; Biodiesel; Methyl decanoate; Diesel engine; Auto-ignition

Funding

  1. National Science Foundation [0904771]
  2. US Department of Energy, Office of Vehicle Technologies
  3. US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]
  4. Argonne, a US Department of Energy Office of Science laboratory [DE-AC02-06CH11357]

Ask authors/readers for more resources

A skeletal mechanism with 115 species and 460 reactions for a tri-component biodiesel surrogate, which consists of methyl decanoate, methyl 9-decenoate and n-heptane, was developed to reduce computational costs for 3-D engine simulations. The detailed mechanism for biodiesel developed by Lawrence Livermore National Laboratory (LLNL) was employed as the starting mechanism. The rate constants for the n-heptane and larger alkane subcomponents in the detailed mechanism were first updated. The detailed mechanism was then reduced with direct relation graph (DRG), isomer lumping, and DRG-aided sensitivity analysis (DRGASA), which was improved to achieve a larger extent of reduction. The reduction was performed for pressures from 1 to 100 atm and equivalence ratios from 0.5 to 2 for both extinction and ignition applications. The initial temperatures for ignition were from 700 to 1800 K, covering the compression ignition (CI) engine conditions. Extensive validations were performed against 0-D simulations with the detailed mechanism and experimental data for spatially homogeneous systems, 1-D flames and 3D-turbulent spray combustion. The skeletal mechanism was able to predict various combustion characteristics accurately such as ignition delay, flame lift-off length, and equivalence ratio at flame lift-off location under different ambient conditions. Compared with the detailed mechanism that consists of 3299 species and 10806 reactions, the skeletal mechanism features a reduction by a factor of around 30 in size while still retaining good accuracy and comprehensiveness. (C) 2012 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available