4.7 Article

Sorbent attrition in a carbonation/calcination pilot plant for capturing CO2 from flue gases

Journal

FUEL
Volume 89, Issue 10, Pages 2918-2924

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2010.01.019

Keywords

CO2 capture; Limestone; Attrition; Fluidized bed

Funding

  1. FICYT

Ask authors/readers for more resources

here is increasing interest in CO2 looping cycles that involve the repeated calcination and carbonation of the sorbent as a way to capture CO2 from flue gases during the carbonation step and the generation of a pure stream of CO2 in the oxyfired calcination step. In particular, attrition of the material in these interconnected fluidized bed reactors is a problem of general concern. Attrition of limestone derived materials has been studied in fluidized bed systems by numerous authors. In this work, we have investigated the attrition of two limestones used in a system of two interconnected circulating fluidized bed reactors operating in continuous mode as carbonation and calciner reactors. We observed a rapid initial attrition of both limestones during the calcination step which was then followed by a highly stable period (up to 140 h of added circulation for one of the limestones) during which particle size changes were negligible. This is consistent with previous observations of attrition in other systems that employ these materials. However, a comparison of the attrition model constants with the data reported in the literature showed the two limestones to be particularly fragile during the initial calcination and the first few hours of circulation. Thus, a careful choice of limestone based on its attrition properties must be taken into account in designing future carbonate looping systems. (c) 2010 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available