4.7 Article

Optimization of a heavy-duty compression-ignition engine fueled with diesel and gasoline-like fuels

Journal

FUEL
Volume 89, Issue 11, Pages 3416-3430

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2010.02.023

Keywords

Optimization; Compression-ignition engine; Diesel; Gasoline; E10

Funding

  1. US Department of Energy [DEFC26-06NT42628]

Ask authors/readers for more resources

Optimal injection strategies for a heavy-duty compression-ignition engine fueled with diesel and gasoline-like fuels (#91 gasoline and E10) and operated under mid-and high-load conditions are investigated. A state-of-the-art engine CFD tool with detailed fuel chemistry was used to evaluate the engine performance and pollutant emissions. The CFD tools feature a recently developed efficient chemistry solver that allowed the optimization tasks to be completed in practical computer times. A Non-dominated Sorting Genetic Algorithm II (NSGA II) was coupled with the CFD tool to seek optimal combinations of injection system variables to achieve clean and efficient combustion. The optimization study identified several key parameters that influence engine performance. It was found that the fuel volatility and reactivity both play important roles at the mid-load condition, while the high-load condition is less sensitive to the fuel reactivity. However, high volatility fuels, such as gasoline and E10, were found to be beneficial to fuel economy at high-load. The study indicates that with an optimized injection system gasoline-like fuels are promising for heavy-duty CI engines due to their lower NOx and soot emissions and higher fuel economy compared to conventional diesel fuels. However, the high in-cylinder gas pressure rise rate associated with Partially Premixed Combustion of gasoline-like fuels can become problematic at high-load and the low-load operating limit is also a challenge. Potential solutions are discussed based on the present optimization results. (C) 2010 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available