4.5 Article

Characterizing aging in the human brainstem using quantitative multimodal MRI analysis

Journal

FRONTIERS IN HUMAN NEUROSCIENCE
Volume 7, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fnhum.2013.00462

Keywords

brainstem; quantitative MRI; tensor-based morphometry; voxel-based quantification; aging

Funding

  1. Wellcome Trust Grant [075696/Z/04/Z, 091593/Z/10/Z]
  2. Academy of Medical Sciences Starter Grants for Clinical Lecturers
  3. Swiss National Science Foundation [320030_135679]
  4. Foundation Parkinson Switzerland
  5. Deutsche Forschungsgemeinschaft [KFO 247/0]
  6. Novartis Foundation for medical-biological research
  7. Synapsis Foundation
  8. Swiss National Science Foundation (SNF) [320030_135679] Funding Source: Swiss National Science Foundation (SNF)
  9. Academy of Medical Sciences (AMS) [AMS-SGCL8-Lambert] Funding Source: researchfish
  10. National Institute for Health Research [CL-2012-16-501] Funding Source: researchfish
  11. Wellcome Trust [091593/Z/10/Z] Funding Source: Wellcome Trust

Ask authors/readers for more resources

Aging is ubiquitous to the human condition. The MRI correlates of healthy aging have been extensively investigated using a range of modalities, including volumetric MRI, quantitative MRI (qMRI), and diffusion tensor imaging. Despite this, the reported brainstem related changes remain sparse. This is, in part, due to the technical and methodological limitations in quantitatively assessing and statistically analyzing this region. By utilizing a new method of brainstem segmentation, a large cohort of 100 healthy adults were assessed in this study for the effects of aging within the human brainstem in vivo. Using qMRI, tensor-based morphometry (TBM), and voxel-based quantification (VBQ), the volumetric and quantitative changes across healthy adults between 19 and 75 years were characterized. In addition to the increased R2* in substantia nigra corresponding to increasing iron deposition with age, several novel findings were reported in the current study. These include selective volumetric loss of the brachium conjunctivum, with a corresponding decrease in magnetization transfer and increase in proton density (PD), accounting for the previously described midbrain shrinkage. Additionally, we found increases in R1 and PD in several pontine and medullary structures. We consider these changes in the context of well-characterized, functional age-related changes, and propose potential biophysical mechanisms. This study provides detailed quantitative analysis of the internal architecture of the brainstem and provides a baseline for further studies of neurodegenerative diseases that are characterized by early, pre-clinical involvement of the brainstem, such as Parkinson's and Alzheimer's diseases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available