4.5 Article

Modulation of cardiac ryanodine receptor activity by ROS and RNS

Journal

FRONTIERS IN BIOSCIENCE-LANDMARK
Volume 16, Issue -, Pages 553-567

Publisher

FRONTIERS IN BIOSCIENCE INC
DOI: 10.2741/3705

Keywords

Heart; calcium release channel; reactive oxygen species; reactive nitrogen species; redox regulation; Ryanodine Receptor; nitric oxide synthase; NADPH oxidase; S-nitrosylation; S-glutathionylation; Review

Funding

  1. Fondo Nacional de Investigacion Cientifica y Tecnologica [1080481, 1080497]
  2. Fondecyt-FONDAP [15010006]

Ask authors/readers for more resources

Calcium release through cardiac ryanodine receptors (RyR2) triggers heart muscle contraction. Reactive oxygen/nitrogen species (ROS/RNS), normally produced in the heart, promote endogenous RyR2 S-nitrosylation and S-glutathionylation. These reversible redox modifications increase RyR2 activity in vitro, and presumably also in vivo. RyR2 S-glutathionylation increases under physiologically relevant conditions (tachycardia and exercise), suggesting that cardiac cells utilize this redox modification to increase RyR2 activity under increased demand. In contrast, in vivo changes in RyR2 S-nitrosylation in response to physiological stimuli remain uncharacterized. The number and identity of the highly reactive RyR2 cysteine residues and the nature of the redox modification they undergo are presently unknown. Likewise, the physiological sources of ROS/RNS responsible for functionally relevant RyR2 redox modifications have not been completely identified. The redox state of RyR2 is altered in heart failure leading to enhanced RyR2 activity, which presumably contributes to decrease SR calcium content and induce other calcium release abnormalities observed in heart failure. Greater understanding of RyR2 redox modulation is necessary to counteract the deleterious consequences of RyR2 activity deregulation caused by oxidative stress.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available