4.5 Article

Physiological consequences of membrane-initiated estrogen signaling in the brain

Journal

FRONTIERS IN BIOSCIENCE-LANDMARK
Volume 16, Issue -, Pages 1560-1573

Publisher

FRONTIERS IN BIOSCIENCE INC
DOI: 10.2741/3805

Keywords

Estrogen; Membrane Receptor; Reproduction; Energy Homeostasis; Neuroprotection; Hypothalamus; Hippocampus; Review

Funding

  1. PHS [NS 43330, NS 38809, DK 68098]
  2. NATIONAL INSTITUTE OF DIABETES AND DIGESTIVE AND KIDNEY DISEASES [R01DK068098, K99DK083457, R00DK083457] Funding Source: NIH RePORTER
  3. NATIONAL INSTITUTE OF NEUROLOGICAL DISORDERS AND STROKE [R01NS038809, R01NS043330, R56NS038809] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Many of the actions of 17beta-estradiol (E2) in the central nervous system (CNS) are mediated via the classical nuclear steroid receptors, ERalpha and ERbeta, which interact with the estrogen response element to modulate gene expression. In addition to the nuclear-initiated estrogen signaling, E2 signaling in the brain can occur rapidly within minutes prior to any sufficient effects on transcription of relevant genes. These rapid, membrane-initiated E2 signaling mechanisms have now been characterized in many brain regions, most importantly in neurons of the hypothalamus and hippocampus. Furthermore, our understanding of the physiological effects of membrane-initiated pathways is now a major field of interest in the hypothalamic control of reproduction, energy balance, thermoregulation and other homeostatic functions as well as the effects of E2 on physiological and pathophysiological functions of the hippocampus. Membrane signaling pathways impact neuronal excitability, signal transduction, cell death, neurotransmitter release and gene expression. This review will summarize recent findings on membrane-initiated E2 signaling in the hypothalamus and hippocampus and its contribution to the control of physiological and behavioral functions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available