4.5 Review

Superoxide, NO, peroxynitrite and PARP in circulatory shock and inflammation

Journal

FRONTIERS IN BIOSCIENCE-LANDMARK
Volume 14, Issue -, Pages 263-296

Publisher

BIOSCIENCE RESEARCH INST-BRI
DOI: 10.2741/3244

Keywords

ROS; PARP-1; Shock; Inflammation; Review

Ask authors/readers for more resources

Oxidative stress results from an oxidant/antioxidant imbalance, an excess of oxidants and/or a depletion of antioxidants. A vast amount of circumstantial evidence implicates oxygen-derived free radicals (especially, superoxide and hydroxyl radical) and high energy oxidants (such as peroxynitrite) as mediators of tissue injury associated with circulatory shock and inflammation. Reactive oxygen species (ROS) (e.g., superoxide, peroxynitrite, hydroxyl radical and hydrogen peroxide) are all potential reactants capable of initiating DNA single strand breakage, with subsequent activation of the nuclear enzyme poly (ADP ribose) synthetase (PARS), leading to eventual severe energy depletion of the cells, and necrotic-type cell death. Moreover, Poly (ADP-ribosyl) ation is regulated by the synthesizing enzyme poly (ADP-ribose) polymerase-1 (PARP-1) and the degrading enzyme poly (ADP-ribose) glycohydrolase (PARG). Here we review the roles of ROS, PARP-1 and PARG in circulatory shock and inflammation as well as the beneficial effect of the in vivo treatment with novel pharmacological tools (e.g. peroxynitrite decomposition catalysts, selective superoxide dismutase mimetics (SODm), PARP-1 and PARG inhibitors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available