4.3 Article

Influenza A virus and TLR7 activation potentiate NOX2 oxidase-dependent ROS production in macrophages

Journal

FREE RADICAL RESEARCH
Volume 48, Issue 8, Pages 940-947

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.3109/10715762.2014.927579

Keywords

superoxide; imiquimod; poly I:C; lung pathology; oxidative stress

Funding

  1. Australian Research Council [FT120100876]
  2. National Health and Medical Research Council of Australia [APP1027112]
  3. Australian Research Council [FT120100876] Funding Source: Australian Research Council

Ask authors/readers for more resources

Influenza A virus infects resident alveolar macrophages in the respiratory tract resulting in Toll like receptor 7 (TLR7) activation that triggers an inflammatory response to resolve the infection. Macrophages are also major sources of reactive oxygen species (ROS) via the NOX2-containing NADPH oxidase. Although ROS are crucial for pathogen clearance, in response to influenza A virus, ROS are touted as being culprit mediators of the lung tissue injury. The aim of the present study was to determine whether influenza A virus infection and TLR7 activation of macrophages, results in alterations in their ROS production. Here we demonstrate using immunofluorescence that influenza A virus (Hong Kong X-31 strain; H3N2) internalizes in RAW264.7 cells and mouse alveolar macrophages within 1 h, resulting in a significant enhancement in the stimulated NOX2 oxidase-dependent oxidative burst, although virus had no effect on basal ROS. The specific TLR7 agonist imiquimod (10 mu g/ml) elevated basal superoxide production and, in a similar fashion to influenza A virus, enhanced NOX2 oxidase-dependent oxidative burst. By contrast, the TLR3 agonist, poly I:C (1-100 mu g/ml) failed to influence the oxidative burst to NOX2 oxidase. A peptide corresponding to the region 337-348 on p47phox conjugated to a HIV-tat, designed to inhibit the phosphorylation of Ser346 on p47phox suppressed the influenza A virus- and imiquimod-induced enhancement in the oxidative burst. In conclusion, this study demonstrates for the first time that influenza A virus and TLR7 activation enhance the NOX2 oxidase-dependent oxidative burst in macrophages, which might underpin the acute lung injury to influenza A virus infection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available