4.3 Article

Lipid and protein oxidation in hepatic homogenates and cell membranes exposed to bile acids

Journal

FREE RADICAL RESEARCH
Volume 43, Issue 11, Pages 1080-1089

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/10715760903176927

Keywords

Bile acid; oxidative stress; cholestasis; lipid peroxidation; protein carbonyls

Funding

  1. Gobierno de Aragon [B40]
  2. Instituto de Salud Carlos III [RD06/0013/1017]

Ask authors/readers for more resources

Cholestasis occurs in a variety of hepatic diseases and causes damage due to accumulation of bile acids in the liver. The aim was to investigate the effect of several bile acids, i.e. chenodeoxycholic, taurochenodeoxycholic, deoxycholic, taurodeoxycholic, ursodeoxycholic, lithocholic and taurolithocholic (TLC), in inducing oxidative damage. Hepatic tissue of male Sprague-Dawley rats was incubated with or without 1 mM of each bile acid, with or without 0.1 mM FeCl3 and 0.1 mM ascorbic acid for the purpose of generating free radicals. Several bile acids increased lipid and protein oxidation, with TLC being the most pro-oxidative (657% and 175% in homogenates and 350% and 311% in membranes, respectively). TLC also enhanced iron-induced oxidative stress to lipids (21% in homogenates and 29% in membranes) and to proteins (74% in membranes). This enhancement was dose-and time-dependent and was reduced by melatonin. These results suggest that bile acids differentially mediate hepatic oxidative stress and may be involved in the physiopathology of cholestasis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available