4.7 Article

NADPH oxidase 4 promotes cardiac microvascular angiogenesis after hypoxia/reoxygenation in vitro

Journal

FREE RADICAL BIOLOGY AND MEDICINE
Volume 69, Issue -, Pages 278-288

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.freeradbiomed.2014.01.027

Keywords

NADPH oxidase 4; Ischemia/reperfusion; Cardiac microvascular endothelial cells; Angiogenesis; Reactive oxygen species; Free radicals

Funding

  1. National Natural Science Foundation of China [81200101, 31171090]

Ask authors/readers for more resources

Microvascular endothelial cell dysfunction plays a key role in myocardial ischemia/reperfusion (I/R) injury, wherein reactive oxygen species (ROS)-dependent signaling is intensively involved. However, the roles of the various ROS sources remain unclear. This study sought to investigate the role of NADPH oxidase 4 (Nox4) in the cardiac microvascular endothelium in response to I/R injury. Adult rat cardiac microvascular endothelial cells (CMECs) were isolated and subjected to hypoxia/reoxygenation (H/R). Our results showed that Nox4 was highly expressed in CMECs, was significantly increased at both mRNA and protein levels after H/R injury, and contributed to H/R-stimulated increase in Nox activity and ROS generation. Downregulation of Nox4 by small interfering RNA transfection did not affect cell viability or ROS production under normoxia, but exacerbated H/R injury as evidenced by increased apoptosis and inhibited cell survival, migration, and angiogenesis after H/R. Nox4 inhibition also increased prolyl hydroxylase 2 (PHD2) expression and blocked H/R-induced increases in HIF-alpha and VEGF expression. Pretreatment with DMOG, a specific competitive PHD inhibitor, upregulated HIP-Ice and VEGF expression and significantly reversed Nox4 knockdown-induced injury. However, Nox2 was scarcely expressed and played a minimal role in CMEC survival and angiogenesis after H/R, though a modest upregulation of Nox2 was observed. In conclusion, this study demonstrated a previously unrecognized protective role of Nox4, a ROS-generating enzyme and the major Nox isoform in CMECs, against H/R injury by inhibiting apoptosis and promoting migration and angiogenesis via a PHD2-dependent upregulation of HIF-1/VEGF proangiogenic signaling.(c) 2014 Elsevier Inc All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available