4.7 Article

Oxidative stress induces claudin-2 nitration in experimental type 1 diabetic nephropathy

Journal

FREE RADICAL BIOLOGY AND MEDICINE
Volume 72, Issue -, Pages 162-175

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.freeradbiomed.2014.03.040

Keywords

Renal tight junctions; Oxidative stress; Claudins; Protein tyrosine nitration; Glucose transporters; Free radicals

Funding

  1. Consejo Nacional de Ciencia y Tecnologia (CONACyT), Mexico [0179870, 129838, PAPIIT IN210713]
  2. CONACyT [255413]

Ask authors/readers for more resources

Renal complications in diabetes are severe and may lead to renal insufficiency. Early alterations in tight junction (TJ) proteins in diabetic nephropathy (DN) have not been explored and the role of oxidative stress in their disassembly has been poorly characterized. We investigated the expression and distribution of TJ proteins: claudin-5 in glomeruli (GL), occludin and claudin-2 in proximal tubules (PTs), and ZO-1 and claudin-1, -4, and -8 in distal tubules (DTs) of rats 21 days after streptozotocin injection. Redox status along the nephron segments was evaluated. Diabetes increased kidney injury molecule-1 expression. Expression of sodium glucose cotransporters (SGLT1 and SGLT2) and facilitative glucose transporter (GLUT2) was induced. Increased oxidative stress was present in GL and PTs and to a lesser extent in DTs (measured by superoxide production and PKC beta 2 expression), owing to NADPH oxidase activation and uncoupling of the endothelial nitric oxide synthase-dependent pathway. Claudin-5, occludin, and claudin-2 expression was decreased, whereas claudin-4 and -8 expression increased. ZO-1 was redistributed from membrane to cytosol. Increased nitration of tyrosine residues in claudin-2 was found, which might contribute to decrement of this protein in proximal tubule. In contrast, occludin was not nitrated. We suggest that loss of claudin-2 is associated with increased natriuresis and that loss of glomerular claudin-5 might explain early presence of proteinuria. These findings suggest that oxidative stress is related to alterations in TJ proteins in the kidney that are relevant to the pathogenesis and progression of DN and for altered sodium regulation in diabetes. (C) 2014 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available