4.7 Article

Glutathione is essential to preserve nuclear function and cell survival under oxidative stress

Journal

FREE RADICAL BIOLOGY AND MEDICINE
Volume 67, Issue -, Pages 103-114

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.freeradbiomed.2013.10.807

Keywords

GSH; Nuclear function; Oxidative stress response; Protein carbonylation; Starvation; H2O2; Free radicals

Ask authors/readers for more resources

Glutathione (GSH) is considered the most important redox buffer of the cell. To better characterize its essential function during oxidative stress conditions, we studied the physiological response of H2O2-treated yeast cells containing various amounts of GSH. We showed that the transcriptional response of GSH-depleted cells is severely impaired, despite an efficient nuclear accumulation of the transcription factor Yap1. Moreover, oxidative stress generates high genome instability in GSH-depleted cells, but does not activate the checkpoint kinase Rad53. Surprisingly, scarce amounts of intracellular GSH are sufficient to preserve cell viability under H2O2 treatment In these cells, oxidative stress still causes the accumulation of oxidized proteins and the inactivation of the translational activity, but nuclear components and activities are protected against oxidative injury. We conclude that the essential role of GSH is to preserve nuclear function, allowing cell survival and growth resumption after oxidative stress release. We propose that cytosolic proteins are part of a protective machinery that shields the nucleus by scavenging reactive oxygen species before they can cross the nuclear membrane. (C) 2013 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available