4.7 Review

Detection of reactive oxygen species derived from the family of NOX NADPH oxidases

Journal

FREE RADICAL BIOLOGY AND MEDICINE
Volume 53, Issue 10, Pages 1903-1918

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.freeradbiomed.2012.09.002

Keywords

NOX; NADPH oxidase; Oxidative stress; Reactive oxygen species; Superoxide anion radical; Hydrogen peroxide; HPLC; Fluorescence; Mass spectrometry; Probes

Funding

  1. European Community's Framework Programme [278611]
  2. Australian Research Council [DP110102135]
  3. National Health and Medical Research Council of Australia [455395]

Ask authors/readers for more resources

NADPH oxidases (NOX) are superoxide anion radical (O-2(-center dot))-generating enzymes. They form a family of seven members, each with a specific tissue distribution. They function as electron transport chains across membranes, using NADPH as electron donor to reduce molecular oxygen to O-2(-center dot). NOX have multiple biological functions, ranging from host defense to inflammation and cellular signaling. Measuring NOX activity is crucial in understanding the roles of these enzymes in physiology and pathology. Many of the methods used to measure NOX activity are based on the detection of small molecules that react with NOX-generated O-2(-center dot) or its direct dismutation product hydrogen peroxide (H2O2) to form fluorescent, luminescent, or colored products. Initial techniques were developed to measure the activity of the phagocyte isoform NOX2 during the oxidative burst of stimulated polymorphonuclear leukocytes, which generate large quantities of O-2(-center dot). However, other members of the NOX family generate much less O-2(-center dot) and hence H2O2, and their activity is difficult to distinguish from other sources of these reactive species. In addition, O-2(-center dot) and H2O2 are reactive molecules and most probes are prone to artifacts and therefore should be used with appropriate controls and the data carefully interpreted. This review gives an overview of current methods used to measure NOX activity and NOX-derived O-2(-center dot) and H2O2 in cells, tissues, isolated systems, and living organisms, describing the advantages and caveats of many established methods with emphasis on more recent technologies and future perspectives. (C) 2012 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available