4.7 Article

Fluorogenic tagging of protein 3-nitrotyrosine with 4-(aminomethyl)benzene sulfonate in tissues: A useful alternative to Immunohistochemistry for fluorescence microscopy imaging of protein nitration

Journal

FREE RADICAL BIOLOGY AND MEDICINE
Volume 53, Issue 10, Pages 1877-1885

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.freeradbiomed.2012.08.582

Keywords

Protein nitration; 3-Nitrotyrosine; Cerebellum; Purkinje cells; 4-(Aminomethyl)benzene sulfonate; Fluorogenic derivatization; Fluorescence microscopy; Immunohistochemistry; Synaptophysin; SIN-1; Free radicals

Funding

  1. NIA [AG23551, AG25350, AG035982, 5P01AG012993]
  2. NICHD [HD02528]

Ask authors/readers for more resources

Protein tyrosine nitration is a common biomarker of biological aging and diverse pathologies associated with the excessive formation of reactive oxygen and nitrogen species. Recently, we suggested a novel fluorogenic derivatization procedure for the detection of 3-nitrotyrosine (3-NT) using benzylamine derivatives to convert specifically protein- or peptide-bound 3-NT to a highly fluorescent benzoxazole product. In this study, we applied this procedure to fluorogenic derivatization of protein 3-NT in sections from adult rat cerebellum to: (i) test this method for imaging nitrated proteins in fixed brain tissue sections and (ii) compare the chemical approach to immunohistochemical labeling with anti-3-NT antibodies. Immunofluorescence analysis of cerebellar sections using anti-3-NT antibodies showed differential levels of immunostaining in the molecular, Purkinje, and granule cell layers of the cerebellar cortex: in agreement with previous reports, the Purkinje cells were most highly labeled. Importantly, fluorogenic derivatization reactions of cerebellar proteins with 4-(aminomethyl)benzene sulfonic acid (ABS) and K3Fe(CN)(6) at pH 9, after sodium dithionite reduction of 3-NT to 3-aminotyrosine, showed a very similar pattern of relative intensity of cell labeling and improved resolution compared with antibody labeling. Our data demonstrate that ABS derivatization may be either a useful alternative to or a complementary approach to immunolabeling in imaging protein nitration in cells and tissues, including under conditions of dual labeling with antibodies to cell proteins, thus allowing for cellular colocalization of nitrated proteins and any protein of interest. (C) 2012 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available