4.7 Article

Catalytic activity of selenomethionine in removing amino acid, peptide, and protein hydroperoxides

Journal

FREE RADICAL BIOLOGY AND MEDICINE
Volume 51, Issue 12, Pages 2288-2299

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.freeradbiomed.2011.09.027

Keywords

Selenomethionine; Methionine selenoxide; Peroxides; Glutathione; Thioredoxin; Thioredoxin reductase; Peroxidase; Free radicals

Funding

  1. Australian Research Council, through the Centres of Excellence [CE0561607]
  2. Australian Research Council [DP0988311]
  3. National Heart Foundation [G09S4313]
  4. Australian Research Council [DP0988311] Funding Source: Australian Research Council

Ask authors/readers for more resources

Selenium is a critical trace element, with deficiency associated with numerous diseases including cardiovascular disease, diabetes, and cancer. Selenomethionine (SeMet; a selenium analogue of the amino acid methionine, Met) is a major form of organic selenium and an important dietary source of selenium for selenoprotein synthesis in vivo. As selenium compounds can be readily oxidized and reduced, and selenocysteine residues play a critical role in the catalytic activity of the key protective enzymes glutathione peroxidase and thioredoxin reductase, we investigated the ability of SeMet (and its sulfur analogue, Met) to scavenge hydroperoxides present on amino acids, peptides, and proteins, which are key intermediates in protein oxidation. We show that SeMet but not Met, can remove these species both stoichiometrically and catalytically in the presence of glutathione (GSH) or a thioredoxin reductase (TrxR)/thioredoxin (Trx)/NADPH system. Reaction of the hydroperoxide with SeMet results in selenoxide formation as detected by HPLC. Recycling of the selenoxide back to SeMet occurs rapidly with GSH, TrxR/NADPH, or a complete TrxR/Trx/NADPH reducing system, with this resulting in an enhanced rate of peroxide removal. In the complete TrxR/Trx/NADPH system loss of peroxide is essentially stoichiometric with NADPH consumption, indicative of a highly efficient system. Similar reactions do not occur with Met under these conditions. Studies using murine macrophage-like J774A.1 cells demonstrate a greater peroxide-removing capacity in cells supplemented with SeMet, compared to nonsupplemented controls. Overall, these findings demonstrate that SeMet may play an important role in the catalytic removal of damaging peptide and protein oxidation products. (C) 2011 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available