4.7 Article

Flavokawain B, a novel chalcone from Alpinia pricei Hayata with potent apoptotic activity: Involvement of ROS and GADD153 upstream of mitochondria-dependent apoptosis in HCT116 cells

Journal

FREE RADICAL BIOLOGY AND MEDICINE
Volume 49, Issue 2, Pages 214-226

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.freeradbiomed.2010.04.005

Keywords

Apoptosis; Alpinia pricei Hayata; Anticancer; Flavonoid; Flavokawain B; GADD153; ROS; Free radicals

Funding

  1. National Science Council [NSC 97-2313-B-005-016-MY3]
  2. Ministry of Education, Taiwan, Republic of China

Ask authors/readers for more resources

Flavonoids synthesized from chalcone precursors in plants have been shown to possess cytotoxic activities with therapeutic potential. We have isolated the novel chalcone flavokawain B from Alpinia pricei Hayata, a plant native to Taiwan that is used in food and traditional Chinese medicine. Here, we report for the first time that flavokawain B significantly inhibits the growth of colon cancer cells and provide novel insight into the molecular mechanisms that underlie its apoptotic activity. Flavokawain B exerts its apoptotic action through ROS generation and GADD153 up-regulation, which lead to mitochondria-dependent apoptosis characterized by release of cytochrome c and translocation of Bak. The up-regulation of GADD153 in flavokawain B-treated HCT116 cells is associated with mitochondrial dysfunction and altered expression of Bcl-2 family members. Moreover, pretreatment with the ROS scavenger N-acetylcysteine abolishes flavokawain B-induced ROS generation, GADD153 up-regulation, and apoptosis. Similarly, RNAi-mediated gene silencing reduced flavokawain B-enhanced expression of GADD153 and apoptotic Bim, leading to diminished apoptosis. Interestingly, flavokawain B provokes G2/M accumulation as well as autophagy, in addition to apoptosis, suggesting that multiple pathways are activated in flavokawain B-mediated anticancer activity. Taken together, our data provide evidence for a molecular mechanism to explain the apoptotic activity of Alpinia plants, showing that flavokawain B acts through ROS generation and GADD153 up-regulation to regulate the expression of Bcl-2 family members, thereby inducing mitochondrial dysfunction and apoptosis in HCT116 cells. (C) 2010 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available