4.7 Article

Oxidative stress induces lipid-raft-mediated activation of Src homology 2 domain-containing protein-tyrosine phosphatase 2 in astrocytes

Journal

FREE RADICAL BIOLOGY AND MEDICINE
Volume 46, Issue 12, Pages 1694-1702

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.freeradbiomed.2009.03.026

Keywords

Reactive oxygen species; Oxidative stress; Hypoxia/reoxygenation; SHP-2; STAT-3; Raft; Phosphorylation; Translocation; Astrocyte; Microglia; Free radicals

Funding

  1. Ajou University [R13-2003-019-01006]

Ask authors/readers for more resources

Several protein phosphatases are involved in neuroprotection in response to ischemic brain injury. Here, we report that reactive oxygen species (ROS)-mediated oxidative stress promotes phosphorylation of endogenous SHP-2 through lipid rafts in rat primary astrocytes. SHP-2 was transiently phosphorylated during hypoxia/reoxygenation, an effect abrogated by a ROS scavenger and an NADPH oxidase inhibitor. Additionally, exogenous treatment with hydrogen peroxide (H2O2) triggered SHP-2 phosphorylation in a time- and dose-dependent manner and led to its translocation into lipid rafts. H2O2-mediated SHP-2 phosphorylation and translocation were inhibited by filipin III and methyl-beta-cyclodextrin (MCD), lipid-raft-disrupting agents. In the presence of H2O2, SHP-2 formed a complex with STAT-3 and reduced the steady-state STAT-3 phosphorylation level. Interestingly, the effect of H2O2 on SHP-2 phosphorylation was cell-type specific. Remarkably, SHP-2 phosphorylation was induced strongly by H2O2 in astrocytes, but barely detectable in microglia. Our results collectively indicate that SHP-2 is activated by ROS-mediated oxidative stress in astrocytes and functions as a component of the raft-mediated signaling pathway that acts through dephosphorylation and inactivation of other phosphotyrosine proteins, such as STAT-3. (C) 2009 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available