4.7 Review

Free radicals and muscle fatigue: Of ROS, canaries, and the IOC

Journal

FREE RADICAL BIOLOGY AND MEDICINE
Volume 44, Issue 2, Pages 169-179

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.freeradbiomed.2007.03.002

Keywords

skeletal muscle; exercise; oxidative stress; antioxidants; diaphragm; free radicals

Funding

  1. NHLBI NIH HHS [HL45721] Funding Source: Medline

Ask authors/readers for more resources

Skeletal muscle fibers continually generate reactive oxygen species (ROS) at a slow rate that increases during muscle contraction. This activity-dependent increase in ROS production contributes to fatigue of skeletal muscle during strenuous exercise. Existing data suggest that muscle-derived ROS primarily act on myofibrillar proteins to inhibit calcium sensitivity and depress force. Decrements in calcium sensitivity and force are acutely reversible by dithiothreitol, a thiol-selective reducing agent. These observations suggest that thiol modifications on one or more regulatory proteins are responsible for oxidant-induced losses during fatigue. More intense ROS exposure leads to losses in calcium regulation that mimic pathologic changes and are not reversible. Studies in humans, quadrupeds, and isolated muscle preparations indicate that antioxidant pretreatment can delay muscle fatigue. In humans, this phenomenon is best defined for N-acetylcysteine (NAC), a reduced thiol donor that supports glutathione resynthesis. NAC has been shown to inhibit fatigue in healthy adults during electrical muscle activation, inspiratory resistive loading, handgrip exercise, and intense cycling. These findings identify ROS as endogenous mediators of muscle fatigue and highlight the importance of future research to (a) define the cellular mechanism of ROS action and (b) develop antioxidants as novel therapeutic interventions for treating fatigue. (C) 2007 Published by Elsevier Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available