4.5 Article

Non-parametric prediction and mapping of standing timber volume and biomass in a temperate forest: application of multiple optical/LiDAR-derived predictors

Journal

FORESTRY
Volume 83, Issue 4, Pages 395-407

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/forestry/cpq022

Keywords

-

Categories

Funding

  1. German Academic Exchange Service (DAAD)

Ask authors/readers for more resources

In a mixed temperate forest landscape in southwestern Germany, multiple remote sensing variables from aerial orthoimages, Thematic Mapper data and small footprint light detection and ranging (LiDAR) were used for plot-level nonparametric predictions of the total volume and biomass using three distance measures of Euclidean, Mahalanobis and Most Similar Neighbour as well as a regression tree-based classifier (Random Forest). The performances of nearest neighbour (NN) approaches were examined by means of relative bias and root mean squared error. The original high-dimensional dataset was pruned using an evolutionary genetic algorithm search with a NN classification scenario, as well as by a stepwise selection. The genetic algorithm (GA)-selected variables showed improved performance when applying Euclidean and Mahalanobis distances for predictions, whereas the Most Similar Neighbour and Random Forests worked more precise with the full dataset. The GA search proved to be unstable in multiple runs because of intercorrelations among the high-dimensional predictors. The selected datasets are dominated by LiDAR height metrics. Furthermore, The LiDAR-based metrics showed major relevance in predicting both response variables examined here. The Random Forest proved to be superior to the other examined NN methods, which was eventually used for a wall-to-wall mapping of predictions on a grid of 20 x 20 m spatial resolution.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available