4.7 Article

Relationships between stomatal regulation, water-use, and water-use efficiency of two coexisting key Mediterranean tree species

Journal

FOREST ECOLOGY AND MANAGEMENT
Volume 302, Issue -, Pages 34-42

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.foreco.2013.03.044

Keywords

Transpiration; Isohydric/anisohydric; Gas exchange; Tree-ring; Water yield

Categories

Funding

  1. Israel Science Foundation (ISF)
  2. Minerva Foundation
  3. JNF-KKL, France-Israel High Council for Research Scientific and Technological Cooperation
  4. C. Wills and R. Lewis program in Environmental Science
  5. Karshon Foundation
  6. Rieger Foundation

Ask authors/readers for more resources

This study aims to test the hypothesis that as leaf water potential decreases, stomata! conductance (g(s)) and total water use decrease faster in trees tending toward isohydric behavior than in coexisting anisohydric trees. We measured leaf gas exchange rates in two key Mediterranean species: Pious halepensis (isohydric) and Quercus calliprinos (anisohydric) growing together in two different sites during seven field campaigns over 14 months. Intrinsic water-use efficiency (WUEi) was calculated from gas exchange ratios, and independently from carbon isotopic composition, delta C-13, of annual tree-ring sub-sections in four representative growth years. As expected, g(s) was greatly restricted already at VPD <3 kPa in pine trees whereas in oak trees g(s) was dynamically adjusted even at VPD > 5 kPa. Consequently, mean transpiration rates were 0.2-2.2 and 0.5-3.9 mmol m(2) s(-1) in coexisting pines and oaks, respectively. Mean delta C-13 values were 1.5 parts per thousand higher in tree- rings of the pine compared to the oak trees, consistent with the differences in WOE; between 75 and 64 mu mol CO2 mol(-1) H2O in pines and oaks, respectively, based on the short-term gas exchange measurements. A preliminary attempt to upscale the results to typical forest stands of the two species, on annual time-scales, demonstrated that the differences in stomatal regulation and water-use could imply similar to 30% higher water-use (or similar to 70% lower water yield) in oak stand compared to pine stand, related to its tendency toward anisohydric behavior. This sets the limit for typical 300 trees ha(-1) oak and pine stands at the 460 and 360 mm iso-precipitation lines, respectively, consistent with their current distribution along the precipitation gradient in our region. The results can help predict or manage changes in species composition in the face of increasing water limitations in Mediterranean regions. (C) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available