4.7 Article

Competition for nitrogen between adult European beech and its offspring is reduced by avoidance strategy

Journal

FOREST ECOLOGY AND MANAGEMENT
Volume 262, Issue 2, Pages 105-114

Publisher

ELSEVIER
DOI: 10.1016/j.foreco.2011.01.035

Keywords

Fagus sylvatica; N uptake; N metabolites; Soil microorganisms; Soil N processes; Removal approach

Categories

Funding

  1. German Research Foundation/Deutsche Forschungsgemeinschaft (DFG) within Beech Research Group [FOR 788, MA 749/21-1, RE 515/27-1]

Ask authors/readers for more resources

Plant growth, reproduction, and biomass allocation may be affected differently by nitrogen availability depending on tree size and age. In this context, competition for limited N may be avoided by different strategies of N acquisition between different vegetation components (i.e., seedlings, mature trees, other woody and herbaceous understorey). This study investigated in a field experiment whether the competition for N between different vegetation components in beech forests was prevented via seasonal timing of N uptake and affected by microbial N use. For this purpose, a removal approach was used to study the seasonal effects on N uptake and N metabolites in adult beech trees and beech natural regeneration, as well as soil microbial processes of inorganic N production and utilisation. We found that the competition for N between beech natural regeneration and mature beech trees was reduced by seasonal avoidance strategies (good parenting) of N uptake regardless of the N sources used. In spring, organic and inorganic N uptake capacity was significantly higher in beech seedlings compared to adult beech trees, whereas in autumn mature beech trees showed the highest N uptake rates. Removal of vegetation components did not result in changes in soil microbial N processes in the course of the growing season. Thus, N resources released by the removal of vegetation components were marginal. This consistency in soil microbial N processes indicates that competition between plants and soil microorganisms for N was not avoided by timing of acquisition during the vegetation period, but existed during the entire growing season. In conclusion, N nutrition in the studied forest ecosystem seems to be optimally attuned to European beech. (C) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available