4.7 Article

Formulating allometric equations for estimating biomass and carbon stock in small diameter trees

Journal

FOREST ECOLOGY AND MANAGEMENT
Volume 261, Issue 11, Pages 1945-1949

Publisher

ELSEVIER
DOI: 10.1016/j.foreco.2011.02.019

Keywords

Allometric; Biomass; Terai; Litter; Himalaya

Categories

Funding

  1. NRSC

Ask authors/readers for more resources

Biomass and carbon sequestration rate of a young (four year old) mixed plantation of Dalbergia sissoo Roxb., Acacia catechu Willd., and Albizia lebbeck Benth. growing in Terai region (a level area of superabundant water) of central Himalaya was estimated. The plantation is seed sown in the rainy season of year 2004 and spread over an area of 44 ha. Allometric equations for both above and below ground components were developed for three tree species. The density of trees in the plantation was 1322 trees ha(-1) The diameters of trees were below 10 cm. Five diameter classes were defined for D. sissoo and A. catechu and 3 for A. lebbeck. 5 trees were harvested in each diameter class. Individual tree allometry was exercised for developing the allometric equations relating tree component (low and above ground) biomass to d.b.h. Post analysis equations were highly significant (P > 0.001) for each component of all species. In the plantation Holoptelia integnfolia Roxb. (Family Ulmaceae) has been reduced to shrub form because of frost. Only the aboveground biomass of H. integrifolia and other shrubs were estimated by destructive harvesting method. Herbaceous forest floor biomass and leaf litter fall were also estimated. The total forest vegetation biomass was 10.86 Mg ha(-1) in 2008 which increased to 19.49 Mg ha(-1) in 2009. The forest is sequestering carbon at the rate of 4.32 Mg ha(-1) yr(-1). (C) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available