4.7 Article

Relationship between vegetation carbon storage and urbanization: A case study of Xiamen, China

Journal

FOREST ECOLOGY AND MANAGEMENT
Volume 261, Issue 7, Pages 1214-1223

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.foreco.2010.12.038

Keywords

Vegetation carbon storage; Carbon density; Urbanization; Carbon spatial distribution; Carbon dynamics

Categories

Funding

  1. CAS/SAFEA International Partnership Program for Creative Research Teams [KZCX2-YW-T08]
  2. Fujian Provincial Department of Science and Technology [2009J01189]
  3. Xiamen Municipal Department of Science and Technology [3502Z20092005, 3502Z20101015]

Ask authors/readers for more resources

Rapid growth of the Chinese urban population and the expansion of urban areas have led to changes in urban forest structure and composition, and consequently changes in vegetation carbon storage. The purpose of this study is to quantify the effects of urbanization on vegetation carbon storage in Xiamen, a city located in southern China. Data used for this study were collected from 39,723 sample plots managed according to the forest management planning inventory program. Data from these plots were collected in 4 non-consecutive years: 1972, 1988, 1996 and 2006. The study area was divided into three zones, which were defined according to their level of urbanization: the urban core, the suburban zone, and the exurban zone. Total vegetation carbon storage and the vegetation carbon density for each study period were calculated for each zone. Our results show that urban vegetation carbon storage has increased by 865,589.71 t during the period from 1972 to 2006 (34 years) in Xiamen, with a rapid increase between 1972 and 1996, then relatively little change between 1996 and 2006. The increase in vegetation carbon storage is mainly due to the large percentages of the suburban and exurban areas which exist in Xiamen city, and the implementation of reforestation programs in these two zones. The percentage of total regional carbon storage in the city center (urban core), suburbs and exurbs was 5%, 23% and 72%, respectively. This demonstrates that the exurbs store the majority of vegetation carbon, and thus play a critical role in the vegetation carbon storage of the study area. The intensification of urbanization in the future will likely expand the urban core and reduce the area of the suburbs and exurbs, and thus potentially decrease total vegetation carbon storage. This article concludes with a discussion of the implications of these results for vegetation carbon management and urban landscape planning. (c) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available